Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Energy Sources Part a-Recovery Utilization and Environmental Effects ; 45(2):5063-5080, 2023.
Article in English | Web of Science | ID: covidwho-2327267

ABSTRACT

The COVID-19 pandemic has created a new type of waste (surgical mask waste "WMs") that presents a major challenge now and in the future, given the strong possibilities of similar epidemics to reoccur. In order to find an effective industrial solution to the millions of WMs produced daily, this research aims to develop a new eco-friendly strategy to convert WMs into H-2-CH4-rich syngas, carbon nanoparticles (CNPs), and benzene-rich tar using an updraft gasifier system. The experiments started with the preparation of WM granules using shredding followed by granulation processes. Subsequently, the granules were processed in a lab-scale reactor with a capacity of 0.9-1 kg/h and consisted of a continuous WM feed system, a gasifier, a sampling system for syngas and tar, a ceramic filtration unit for separating the CNPs against the synthesis gas, and a burner. The gasification experiments were performed in ambient air with different air-fuel equivalence ratios (ER: 0.21, 0.25, and 0.29) and temperatures (700 degrees C, 800 degrees C, and 900 degrees C) to determine the optimal conditions that yield the maximum amount of H-2-CH4-rich syngas and CNPs with less impurities. The chemical composition and morphology of the obtained gasification products (syngas, tar, and CNPs) were observed using GC-FID, FTIR, and SEM. The results showed that the maximum production of syngas (4.29 +/- 0.16 kg/h with HHV of 3804 kJ/kg) and CNPs (0.14 +/- 0.011 kg/h) accompanied by a moderate tar rate (0.123 +/- 0.009 kg/h with HHV of 41,139.88 kJ/kg) could be obtained at 900 degrees C and ER = 0.29, while the highest H-2 (16.93 +/- 1.7 vol.%) and CH4 (10.44 +/- 0.85 vol.%) contents in syngas product were synthesized at 900 degrees C and ER = 0.19. Benzene and toluene were the major GC-FID compounds in the formulated tar product with abundance up to 25.6% and 11%, respectively. Meanwhile, gasification conditions of 900 degrees C and ER = 0.24 allowed the best morphology to be formulated for spherical-shaped CNPs with a diameter of less than 200 nm.

2.
Energies (19961073) ; 16(9):3948, 2023.
Article in English | Academic Search Complete | ID: covidwho-2320721

ABSTRACT

During the COVID-19 pandemic, more than 24 billion pieces of surgical mask waste (WM) were generated in the EU region, with an acute shortage of their management and recycling. Pyrolysis and gasification are among the most promising treatments that were proposed to dispose of WMs and convert them into pyrolysis oil and hydrogen-rich syngas. This work aimed to investigate the techno-economic analysis (TEA) of both treatments in order to assess the feasibility of scaling up. The TEA was carried out using a discounted cash flow model and its data were collected from practical experiments conducted using a fluidised bed pyrolysis reactor and bubbling fluidised bed gasifier system with a capacity of 0.2 kg/h and 1 kg/h, respectively, then upscaling to one tonne/h. The technological evaluation was made based on the optimal conditions that could produce the maximum amount of pyrolysis oil (42.3%) and hydrogen-rich syngas (89.7%). These treatments were also compared to the incineration of WMs as a commercial solution. The discounted payback, simple payback, net present value (NPV), production cost, and internal rate of return (IRR) were the main indicators used in the economic feasibility analysis. Sensitivity analysis was performed using SimLab software with the help of Monte Carlo simulations. The results showed that the production cost of the main variables was estimated at 45.4 EUR/t (gate fee), 71.7 EUR/MWh (electricity), 30.5 EUR/MWh (heat), 356 EUR/t (oil), 221 EUR/t (gaseous), 237 EUR/t (char), and 257 EUR/t (syngas). Meanwhile, the IRR results showed that gasification (12.51%) and incineration (7.56%) have better economic performance, while pyrolysis can produce less revenue (1.73%). Based on the TEA results, it is highly recommended to use the gasification process to treat WMs, yielding higher revenue. [ FROM AUTHOR] Copyright of Energies (19961073) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

3.
J CO2 Util ; 59: 101970, 2022 May.
Article in English | MEDLINE | ID: covidwho-1734664

ABSTRACT

The worldwide COVID-19 pandemic has resulted in a huge amount of face masks being used up and thrown away, resulting in increased environmental pollution and infection risks. In our work, we have developed a highly efficient process of neutralizing face mask waste into a useful carbon material. Then, the prepared activated carbon was used for CO2 adsorption studies. A series of activated carbons from face masks used as a precursor were synthesized using KOH and the activation temperature was in the range of 600-800 °C. All materials were characterized by well-developed porosity. The influence of activation temperature on the textural properties of prepared activated carbons and their adsorption abilities were investigated. The highest CO2 adsorption was received for the M_800 carbon and it was 3.91 mmol/g at the temperature of 0 °C and the pressure of 1 bar. M_800 carbon exhibited also high selectivity of CO2 over N2. Seven equilibrium isotherms were applied to the experimental data to find out the best fit (Langmuir, Freundlich, Sips, Toth, Unilan, Fritz-Schlunder and Radke-Prausnitz isotherms). The presented research provides an environmentally friendly and cost-effective method of recycling waste masks into a valuable product in the form of carbon and its potential use in the absorption of harmful CO2 influencing the greenhouse effect.

SELECTION OF CITATIONS
SEARCH DETAIL